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ABSTRACT 
1 

Inves t iga t ion  of t h e  probl  e penet ra t ion  of 

an external longi tudina l  e l e c t r i c  f i e l d  i n t o  a semibounded 

plasma containing an e lec t ron  beam i n  t h e  absence of 

i n s t a b i l i t i e s  i n  t h e  system. It is shown t h a t  t he  system 

of l i n e a r  equations f o r  t h e  o s c i l l a t i o n s  of t h i s  system 

can be reduced t o  an i n t e g r a l  equation f o r  t h e  e l e c t r i c  

f i e l d  and t h a t  a so lu t ion  can be obtained f o r  t h i s  equation 

i n  t h e  form of a sum of two components. Formulas are obtained 

f o r  the  d i s t r i b u t i o n  of t h e  electric f i e l d  and of s m a l l  

per turba t ions  of t h e  beam ve loc i ty  and density.  The f i e l d  

d i s t r i b u t i o n  i n  the  presence of resonance i s  ascertained. 

A grea t  many s tud ie s  ( a  de t a i l ed  bibliography is  given, f o r  example, / 3  * 
i n  t h e  summary of [ R e f .  11) have been devoted t o  t h e  i n t e r a c t i o n  of charged 

p a r t i c l e  beams with a plasma. 

t h a t  t h e  increas ing  longitudinal. waves (Ref. 2-4) are not exci ted  i n  t h e  case 

of a r a t h e r  slow monoenergetic, 

s i s t i n g  of such a beam and a plasma. 

An analys is  of t h e  d ispers ion  equation showed 

low-density e l ec t ron  beam i n  a system con- 
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The penet ra t ion  of an externa l  longi tudina l  electric f i e l d  i n t o  a semi- 

bounded plasma wi th  an e l ec t ron  beam when the re  are no i n s t a b i l i t i e s  i n  t h e  

system i s  inves t iga ted  ( the  boundary problem f o r  increasing waves w a s  examined 

i n  [Ref. 51). I n  a certain sense, t h i s  problem represents  a genera l iza t ion  

of t h e  second por t ion  of t h e  well-known work by L. D. Landau (Ref. 6 )  t o  t h e  

case of a plasma with a beam. On the  o the r  hand, when there is no external 

electric f i e l d  t h i s  problem can be regarded as a boundary value problem con- 

cerning t h e  i n t e r a c t i o n  of a weakly-modulated e l ec t ron  beam with a plasma. 

1. Obtaining an I n t e g r a l  Equation. L e t  t h e  plasma be bounded by a 

f l a t  w a l l  which i d e a l l y  r e f l e c t s  p a r t i c l e s  impacting upon it ,  and le t  t h e  

e l e c t r o n  beam with the  charge density po and t h e  ve loc i ty  vo with respec t  

t o  t h e  plasma be propagated perpendicularly t o  t h i s  plane i n  the  depths of 

t h e  plasma. It is assumed t h a t  t he re  is no thermal s c a t t e r  of t h e  v e l o c i t i e s  

i n  t h e  beam. L e t  t h e  x axis l i e  along t h e  w a l l  i n  t h e  d i r e c t i o n  i n  which 

the  beam is propagated; let  u represent t h e  ve loc i ty  component along t h i s  

axis. 

The d i s t r i b u t i o n  function f (u ,  x) m u s t  have t h e  property f ( u ,  0) = f(-u, 0) 

a t  t h e  boundary; w e  thus employed the  d i s t r i b u t i o n  function which is  in t eg ra t ed  

over V and V,. Y 

The magnitude of t he  longi tudina l  e l e c t r i c  f i e l d  El, t h e  per turba t ion  of 

t h e  dens i ty  p l ,  and t h e  ve loc i ty  VI of t h e  beam are a l s o  given a t  t h e  boundary. 

I f  t h e  deviations from equilibrium are small, then t h e  plasma o s c i l l a t i o n s  

of t h e  system can be described by the l i n e a r  equations (Ref. 3) 
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H e r e  f is t h e  devia t ion  of t h e  d i s t r i b u t i o n  function from t h e  M a x w e l l  

d i s t r i b u t i o n  function f o ,  p - t h e  deviation of t h e  beam charge density 

from t h e  equilibrium value PO, which i s  assumed t o  be compensated by the  

excess p o s i t i v e  charge i n  the  plasma,  and v - t h e  deviation of t h e  beam 

v e l o c i t y  from t h e  equilibrium value vo. 

on time is  assumed i n  t h e  form exp (-iwt). 

The dependence of a l l  t h e  q u a n t i t i e s  

The system of equations (1.1) can be reduced t o  an i n t e g r a l  equation 

with respec t  t o  E ( x ) .  Each equation i n  t h e  system m u s t  be formally in t eg ra t ed  

beforehand i n  order t o  do t h i s .  

Thus, w e  f i nd  from t h e  two latter equations of (1.1): - /4  

The r e l a t ionsh ip  connecting f and E,  which follows from t h e  f i r s t  equation 

of (1.11, i s  not given here. It f u l l y  coincides with t h e  equation given by 

L. D. Landau (Ref. 6 ) ,  and it  i s  only necessary f o r  obtaining t h e  i n t e g r a l  

equation. F ina l ly ,  i n t eg ra t ion  of the second equation of (1.1) y i e l d s  

- w '  

The following r e l a t ionsh ip  [from t h e  f i r s t  equation of (1.1)] w a s  employed 

here  : 

Thus, w e  arrive at the following i n t e g r a l  equation: 
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(cont.) 

W e  should no te  t h a t  t h e  function K(S) w a s  s tud ied  i n  the  work by L. D. 

Landau (Ref. 6 ) .  

2. Integral Representation of t h e  Solution. L e t  us reduce t h e  i n t e g r a l  

equation to a form vhich lends i t s e l f  to a so lu t ion  more readi ly .  

f i e l d  E(x) can be conveniently represented as t h e  sum of t h e  two terms 

Thus, t h e  

B (t) = Em + zP(4 (2 1 )  

i s  It can be r ead i ly  shown t h a t  t h e  magnitude of t h e  f i e l d  f o r  x + 

where w-and w+ are t h e  Langmuir plasma frequencies without a beam and an 

e l e c t r o n  beam, respec t ive ly ,  and E is t h e  d i e l e c t r i c  constant of t h e  plasma 

with a beam. 

L(S) and the  unknown function E o ( x )  i n  t h e  region of negative argument values: 

L e t  us supplementarily formally def ine  t h e  functions K(€J and 

Then t h e  i n t e g r a l  equation f o r  Eo(x) can be wr i t t en  i n  t h e  following form: 
00 X 

a4- 5 K ( z - E ) F ~ ) d E f S l ; ( z - E ) ~ ~ ) ~ =  tg(*z) (2 .4 )  
-cp 0 

X 

g(.) = $ (4 -Ea + E,,s [L E) + 2K (El1 a (2 5) 
0 

The upper s igns  here  are f o r  the case of x > 0;  t h e  lower s igns  are f o r  /5 

t h e  case of x < 0. 

L e t  us so lve  t h e  i n t e g r a l  equation (2 .4 )  by the  Fourier method. Multi- 

plying both s i d e s  of theequation by exp (-ikx) and i n t e g r a t i n g  over x from -m 
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For any value of 4(x), t h e  symbols $(k) and Ok are determined by the  

equations 

It can be r ead i ly  seen t h a t  i f  @(x) is  an even function, then i ts  Fourier 

component is $(k) = 4k + 4-k. I f  4(x) i s  an odd function, then 4(k) = $k - $-k. 

Taking t h e  f a c t  t h a t  i t  i s  odd i n t o  account, w e  can represent equation 

(2.6) i n  t h e  following form 

I n  order t o  so lve  equation (2.8), we m u s t  e s t a b l i s h  a connection between 

t h e  func t ions  of t h e  argument -k and t h e  complex conjugate functions of t h e  

argument k. This is poss ib le  i f  we d i s t i ngu i sh  between the  real and imaginary 

p a r t s  i n  Eo(x), g(x),  L(x) and K(x), and i f  w e  examine t h e  transform corres- 

ponding t o  them separately.  Then (2.8) can be reduced t o  a system of two 

equations which relate t h e  imaginary p a r t s  of c e r t a i n  a n a l y t i c a l  functions of 

k. The real p a r t s  of these  ana ly t i ca l  functions can d i f f e r  only by t h e  con- 

s t a n t s .  However, i f  one analyzes t h e  behavior of t h e  functions i n  t h e  case of 

lkl +. m, i t  can be r ead i ly  shown tha t  t he  constants equal zero. As a r e s u l t ,  

w e  ob ta in  

Thus, t he  e l e c t r i c  f i e l d  can be represented i n  t h e  following form 
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3. Dis t r ibu t ion  of Electric Field,  S m a l l  Velocity Perturbations of 

t h e  Beam and Its Density. Following t h e  procedure given i n  (Ref. 2,6), l e t  

us in t roduce  t h e  functions Kl(k) and K2(k) which are determined by t h e  rela- 

t ionships  

H e r e  8 is the  temperature i n  energy units, m is  t h e  e l ec t ron  mass, and 

t h e  contour C 1  i s  shown i n  t he  figure.  

The func t ion  J-(f3) d i f f e r s  from J+(f3) by t h e  f a c t  t h a t  t h e  pole  i s  by- 

passed from above, and not  from below, during in tegra t ion .  Therefore, we 

It can be r ead i ly  seen that R(k) = Kl(k) i n  t h e  case of k > 0 and 

K(k) = K2(k) f o r  k < 0. S imi la r ly  t o  t h i s ,  l e t  us introduce t h e  function /6 
II (k) = Kk - K-k, and a l s o  t h e  functions IIl(k) and II2(k), which are determined 

by t h e  following formulas: 

( 3 . 4 )  

Here Ei(z) i s  t h e  i n t e g r a l  exponential function. 

It can be shown t h a t  II(k) = II1(k) i n  t h e  case of k > 0 and II(k) = II2(k) 

f o r  k < 0. 

Taking (3.1) and ( 3 . 4 )  i n t o  consideration, w e  obtained t h e  following from 

f o m d 1  (2 i 10) r 
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Figure 1 

Here 

The complete ca l cu la t ion  of the  i n t e g r a l s  in (3.5) can only be done 

numerically. However, we can readi ly  ob ta in  the  asymptotic formula providing 

t h e  l a w  by which the  f i e l d  E ( x )  changes f o r  values of x which are l a r g e  as 

compared with t h e  Debye rad ius  a of t h e  plasma without a beam. 

a computational method which i s  exactly t h e  same as t h a t  used i n  (Ref. 61, 

I f  w e  employ 

w e  ob ta in  the  expression 

Expression (3 .7)  provides t h e  l a w  f o r  t h e  decrease i n  the  d i f f e rence  

E ( x )  - E,, which is  similar t o  t h a t  given i n  (Ref. 6 ) .  

s ince  the re  is no thermal ve loc i ty  scatter i n  the  beam. 

This would be expected, 

I f  E1 + 41~ i f l /w  

changes t o  zero, then the  f i e l d  E ( x )  strives t o  zero i n  t h e  case of x + 03 
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according t o  an exponential l a w ,  which follows from a determination of t h e  

i n t e g r a l s  by means of residues.  

I f  we know the  l a w  by which the  electric f i e l d  is d i s t r i b u t e d  i n  t h e  

plasma, w e  can f ind  t h e  d i s t r i b u t i o n  of the  beam ve loc i ty  perturbation and 

i ts  dens i ty  according t o  formulas (1.2) and (1.3). L e t  us transform these  

expressions i n t o  a form which i s  more advantageous f o r  obtaining asymptotic 

formulas 

For example, i n  t h e  case of large values of x t h e  beam ve loc i ty  perturba- /7 

t i o n  i s  r e l a t e d  t o  t h e  e l e c t r i c  f i e l d  E(x) by t h e  s i m p l e  r e l a t ionsh ip  

O ( l )  = -- zr E @ )  ma (3.9) 

4.  Study of Resonance. L e t  us f i n d  t h e  roo t s  of t h e  integrand denomina- 

t o r s  i n  (3.5). 

t i o n s  (Ref. 2) can be w r i t t e n  i n  the following form 

The dispers ion  equation l-Lk-Kz(k)=O f o r  longi tudina l  o s c i l l a -  

Poles with s m a l l  I m  k make a s i g n i f i c a n t  cont r ibu t ion  t o  t h e  i n t e g r a l  i n  

Therefore, we s h a l l  search f o r  t h e  roots  of equation (4.1) which l i e  ( 3 . 6 ) .  

c lose  t o  t h e  e s s e n t i a l l y  s ingu la r  po in t  k = 0 i n  the  upper half-plane k. 

Assuming t h a t  I B I >> 1, expanding 1 / ( B  - v) i n  powers of v/B, and employing t h e  

asymptotic form of the  function J,(B) i n  t h e  upper half-plane (Ref. 2 )  w e  

f i n a l l y  obta in  

8 



The roo t s  of equation 1 - L-k - K2(k) = 0 are determined by t h e  same 

formula ( 4 . 2 ) ,  i n  which v changes sign, however. One of t h e  roots  of 

( 4 . 2 )  l i es  i n  t h e  upper half-plane k only when t h e  radicand i s  negative,  i .e.,  

(4 .3 )  

L e t  us f i n d  t h e  

upper half-plane k. 

roo t s  of equatian 1 - % - Kl(k) = 0 which a l s o  l i e  i n  t h e  

This equation h a s  t h e  following form 

The asymptotic form of J+(B) i n  t h e  upper half-plane k (which corresponds 

t o  t h e  lower half-plane B )  has an exponentially s m a l l  imaginary term (Ref. 2) .  

L e t  us represent t h e  desired root of equation (4 .4 )  i n  t he  following form 

8 =$4 + W 6 3  ( 4  5 )  

where BO i s  t h e  real p a r t  of t h e  root which determines ( 4 . 2 ) ,  disregarding 

t h e  exponentially small term, and B1 is  t h e  small imaginary addition. We then 

have 

It follows from t h e  formulation of t h e  problem t h a t  a+ << S l -  and v << 1. 

L e t  us represent t h e  d i e l e c t r i c  constant E i n  t he  form E = E* + A E ,  where 

A s  w e  s h a l l  see below, t h e  value of € * W i l l  be  cri t ical ,  s ince  i n  t h e  case 

of E > E* t h e  law by which t h e  f i e l d  changes c lose  t o  t h e  boundary d i f f e r s  

q u a l i t a t i v e l y  from t h a t  i n  t h e  case of E< E*. 

w a s  E* = 0. 

can be explained i n  t h e  case under consideration by a frequency decrease f o r  

a moving beam due t o  t h e  Doppler e f f ec t .  

The c r i t i c a l  value i n  (Ref. 6 )  

The s h i f t  i n  t h e  c r i t i c a l  value E* i n  t h e  region of negative E 

Let us i n v e s t i g a t e  the  cases 
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A E  > 0 and A E  < 0. For A E  > 0 w e  have 

s o  t h a t  i n  t h e  case of v > 0 and A E  > -E*, 130 > 0, and then w e  have t h e  r o o t &  

of t h e  equation (4.4) with Im 61' 0. 

at  least one such r o o t  of equation (4.4). 

I n  t h e  case of v < 0, the re  is always 

Let  AE < 0. Then i n  t h e  lower 

Taking t h e  r e l a t ionsh ips  (4.2)-(4.9) i n t o  consideration and confining 

ourselves t o  l i n e a r  terms i n  expansion by powers of k, w e  f ind  t h a t  i n  t h e  

case of Ac < 0 t h e  electric f i e l d  close t o  t h e  boundary changes according t o  

t h e  l a w  

I n  order t o  abbreviate formula (4.10), l e t  us  set v i  = 0 and f l  = 0 .  

W e  can obta in  the  behavior of the f i e l d  c lose  t o  t h e  boundary i n  the  

case of A c  > 0 i n  a s i m i l a r  way 

E 

Formula (4.11) w a s  a l s o  obtained on t h e  assumption t h a t  VI = 0 and fl = 0.  

The necess i ty  of taking i n t o  account t h e  res idue  i n  t h e  pole  when de- 

termining the  i n t e g r a l  from zero t o  i n f i n i t y ,  leading t o  expression (4.111, 

can be explained by t h e  f a c t  t h a t  t h e m i t i a l  i n t eg ra t ion  contour must be de- 

formed when determining t h e  asymptotic form of t h i s  i n t e g r a l  by t h e  method 

of descent,  so t h a t  it coincides with t h e  l ine of t he  level passing through 
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saddle  point.  

r i g h t  h a l f  of t he  upper half-plane, i f  it i s  located below the  level l i n e  

and above t h e  absc issa  axis. 

I n  t h e  case of t h i s  deformation, t he  pole i s  bypassed i n  t h e  

It mist be assumed t h a t  A E  is  small i n  formula ( 4 . l l ) ,  but y nust there- 

f o r e  be l a rge ,  so t h a t  t h e  f i e l d  i s  slowly damped with an increase  i n  x. 

opposite case, t h i s  component can be disregarded, and t h e  f i e l d  is  determined 

by (3.7). 

I n  the  

I n  t h e  absence of a beam, formulas (4.10) and (4.11), which describe t h e  

resonance case, are inapplicable.  I f  quadra t ic  terms are taken i n t o  account i n  t h e  

expansion i n  powers of k, then t h e  passage t o  the  l i m i t  t o  t h e  case where 

the re  is  no beam gives t h e  r e l a t ionsh ips  obtained i n  (Ref. 6 ) .  

I n  thecase of x = 0, formulas (4.10) and (4.11) do no t  provide t h e  co r rec t  

boundary value of E due t o  t h e  f a c t  t h a t  terms on t h e  order of w e r e  

disregarded i n  the  computations. 

cases t h e  f i e l d  undergoes o s c i l l a t i o n s  around t h e  value of E l / € ,  t o  which i t  

s t r i v e s  a t  i n f i n i t y .  

1 

However, with an increase in x,in both 

The authors would l i k e  t o  thank M. L. Levin f o r  h i s  valuable discussions.  
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